NVS
ex) $(\mathbb{C}^n,\lVert \cdot\rVert_p)$, $(l^p(\mathbb{N}),\lVert\cdot\rVert_p)$, $(L^p(\mathbb{R}),\lVert\cdot\rVert)$
(Singular Value Decomposition Thm.) $A=UDV^*$
Functional Calculus - $f(|A|):=Vf(D)V^*$ ($f\in C[0,\infty)$)
$(M_n(\mathbb{C}),\lVert\cdot\rVert_p)$(Schatten p-norm) NVS
$\lVert\cdot\rVert_\infty =\lVert\cdot \rVert_{op}$
Measure space
ex) $(\mathbb{R}^n,\mathfrak{M},m)$, $(X,2^X,|\cdot|)$, $(X,2^X,\delta_x)$
non mea’ble ex) Vitali set - choose one elt. in [0,1] for each in $\mathbb{R}/\mathbb{Q}$
mea’ble but non Borel ex) for Cantor set C — 3-adic expression only consists of 0 and 2 — set non mea’ble $F\subset g(C)$, consider $g^{-1}(F)$
Banach space
ex) NVS ex above + $(C(K,Y),\lVert\cdot\rVert_\infty)$($K\subset \mathbb{R}^n$ compact, $Y$ Banach), $(C_0(X),\lVert\cdot\rVert)$($X$ lcpt)
separable Hilbert space -dimension countable
Hilbert ex and only) $L^2(X)$
Fourier analysis on $\mathbb{T}$
Parseval Identity
$X$ metrizable ⇒ $T$ conti↔ $T$ bdd.
non-ex) $T:e_n\mapsto ne_n$